Skip to main content
Log in

Theory and simulation of cavity quantum electro-dynamics in multi-partite quantum complex systems

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The cavity quantum electrodynamics of various complex systems is here analyzed using a general versatile code developed in this research. Such quantum multi-partite systems normally consist of an arbitrary number of quantum dots in interaction with an arbitrary number of cavity modes. As an example, a nine-partition system is simulated under different coupling regimes, consisting of eight emitters interacting with one cavity mode. Two-level emitters (e.g. quantum dots) are assumed to have an arrangement in the form of a linear chain, defining the mutual dipole–dipole interactions. It was observed that plotting the system trajectory in the phase space reveals a chaotic behavior in the so-called ultrastrong-coupling regime. This result is mathematically confirmed by detailed calculation of the Kolmogorov entropy, as a measure of chaotic behavior. In order to study the computational complexity of our code, various multi-partite systems consisting of one to eight quantum dots in interaction with one cavity mode were solved individually. Computation run times and the allocated memory for each system were measured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W.P. Schleich, Quantum Optics in Phase Space, 1st edn. (Wiley-VCH, Berlin, 2001)

    Book  MATH  Google Scholar 

  2. E.T. Jaynes, F.W. Cummings, Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51(1), 89–109 (1963)

    Article  Google Scholar 

  3. H. Paul, Induzierte Emission bei starker Einstrahlung. Ann. Phys. 466, 411–412 (1963)

    Article  Google Scholar 

  4. S. Armstrong, J.-F. Morizur, J. Janousek, B. Hage, N. Treps, P. Koy Lam, H.-A. Bachor, Nat. Commun. 3, 1026 (2012)

    Article  ADS  Google Scholar 

  5. G.H. Booth, A. Grüneis, G. Kresse, A. Alavi, Towards an exact description of electronic wavefunctions in real solids. Nature 493, 365–370 (2013)

    Article  ADS  Google Scholar 

  6. J. Cai, A. Retzker, F. Jelezko, M.B. Plenio, A large-scale quantum simulator on a diamond surface at room temperature. Nat. Phys. 9, 168–173 (2013)

    Article  Google Scholar 

  7. P. Grassberger, I. Procaccia, Estimation of the Kolmogorov entropy from a chaotic signal. Phys. Rev. A 28(4), 2591–2593 (1983)

    Article  ADS  Google Scholar 

  8. G.B. Lemos, R.M. Gomes, S.P. Walborn, P.H. Souto Ribeiro, F. Toscano, Experimental observation of quantum chaos in a beam of light. Nat. Commun. 3, 1211 (2012)

    Article  ADS  Google Scholar 

  9. T. Niemczyk, F. Deppe, H. Huebl, E.P. Menzel, F. Hocke, M.J. Schwarz, J.J. Garcia-Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx, R. Gross, Circuit quantum electrodynamics in the ultrastrong-coupling regime. Nat. Phys. 6, 772–776 (2010)

    Article  Google Scholar 

  10. J. Larson, D.H.J. O’Dell, Chaos in circuit QED: decoherence, localization, and nonclassicality. J. Phys. B, At. Mol. Opt. Phys. (2013, to appear)

  11. M. Virte, K. Panajotov, H. Thienpont, M. Sciamanna, Deterministic polarization chaos from a laser diode. Nat. Photonics 7, 60–65 (2013)

    Article  ADS  Google Scholar 

  12. A.H. Sadeghi, A. Naqavi, S. Khorasani, Interaction of quantum dot molecules with multi-mode radiation fields. Sci. Iran. 17, 59–70 (2010)

    MATH  Google Scholar 

  13. E. Ahmadi, H.R. Chalabi, A. Arab, S. Khorasani, Cavity quantum electrodynamics in the ultrastrong coupling regime. Sci. Iran. 18F(3), 820–826 (2011)

    Article  Google Scholar 

  14. E. Ahmadi, H.R. Chalabi, A. Arab, S. Khorasani, Revisiting the Jaynes–Cummings–Paul model in the limit of ultrastrong coupling. Proc. SPIE 7946, 79461W (2011)

    Article  ADS  Google Scholar 

  15. A. Arab, S. Khorasani, Fully automated code for exact and efficient analysis of quantum optical systems in the regime of ultrastrong coupling. Proc. SPIE 8268, 82681M (2012)

    Article  ADS  Google Scholar 

  16. M. Alidoosty Shahraki, S. Khorasani, M.H. Aram, Simulation of multipartite cavity quantum electrodynamics. IEEE J. Quantum Electron. (2013, submitted)

  17. F. Karimi, S. Khorasani, Optical modulation by conducting interfaces. IEEE J. Quantum Electron. 49(7), 607–616 (2013)

    Article  ADS  Google Scholar 

  18. F. Karimi, S. Khorasani, Ultrastrong optical modulation in waveguides with conducting interfaces. Proc. SPIE 8631, 863123 (2013)

    Article  Google Scholar 

  19. M. Alidoosty Shahraki, F. Karimi, S. Khorasani, Detailed simulation of cavity quantum electro-dynamics in III/V heterostructure well/waveguide structures, in Technical Digest of 4th International Topical Meeting on Nanophotonics and Metamaterials, Seefeld, Austria (2013), pp. 3–6

    Google Scholar 

  20. M.H. Aram, R. Mohajeri, S. Khorasani, Construction of Dirac points using triangular supercrystals. Appl. Phys. A (2013). doi:10.1007/s00339-013-8023-6

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by Iranian National Science Foundation (INSF) under Grant 89001329.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sina Khorasani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alidoosty Shahraki, M., Khorasani, S. & Aram, M.H. Theory and simulation of cavity quantum electro-dynamics in multi-partite quantum complex systems. Appl. Phys. A 115, 595–603 (2014). https://doi.org/10.1007/s00339-013-8025-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8025-4

Keywords

Navigation